Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force.

نویسنده

  • James A Lock
چکیده

The efficiency of trapping an on-axis spherical particle by use of laser tweezers for a particle size from the Rayleigh limit to the ray optics limit is calculated from generalized Lorenz-Mie light-scattering theory and the localized version of a Gaussian beam that has been truncated and focused by a high-numerical-aperture lens and that possesses spherical aberration as a result of its transmission through the wall of the sample cell. The results are compared with both the experimental trapping efficiency and the theoretical efficiency obtained from use of the localized version of a freely propagating focused Gaussian beam. The predicted trapping efficiency is found to decrease as a function of the depth of the spherical particle in the sample cell owing to an increasing amount of spherical aberration. The decrease in efficiency is also compared with experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration.

Calculation of the radiation trapping force in laser tweezers by use of generalized Lorenz-Mie theory requires knowledge of the shape coefficients of the incident laser beam. The localized version of these coefficients has been developed and justified only for a moderately focused Gaussian beam polarized in the x direction and traveling in the positive z direction. Here the localized model is e...

متن کامل

Calculation of radiation force and torque exerted on a uniaxial anisotropic sphere by an incident Gaussian beam with arbitrary propagation and polarization directions

On the basis of spherical vector wave functions and coordinate rotation theory, the expansion of the fields of an incident Gaussian beam with arbitrary propagation and polarization directions in terms of spherical vector wave functions is investigated, and beam shape coefficients are derived. Using the results of electromagnetic scattering by a uniaxial anisotropic sphere, the analytical expres...

متن کامل

Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory

Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray opti...

متن کامل

Physical Principle of Optical Tweezers

The radiation pressure of light was first deduced theoretically by James C. Maxwell in 1873 based on his electromagnetic theory [1, 2], and measured experimentally by Lebedev [3], and Nichols and Hull in 1901 [4]. The radiation pressure force exerted on a totally reflecting mirror by an incident beam of light perpendicular to the mirror is Fmirror = 2P/c, where P is the power of the light and c...

متن کامل

Physical Principle of Optical Tweezers

The radiation pressure of light was first deduced theoretically by James C. Maxwell in 1873 based on his electromagnetic theory [1, 2], and measured experimentally by Lebedev [3], and Nichols and Hull in 1901 [4]. The radiation pressure force exerted on a totally reflecting mirror by an incident beam of light perpendicular to the mirror is Fmirror = 2P/c, where P is the power of the light and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 43 12  شماره 

صفحات  -

تاریخ انتشار 2004